Protein translocation through the anthrax toxin transmembrane pore is driven by a proton gradient.
نویسندگان
چکیده
Protective antigen (PA) from anthrax toxin assembles into a homoheptamer on cell surfaces and forms complexes with the enzymatic components: lethal factor (LF) and edema factor (EF). Endocytic vesicles containing these complexes are acidified, causing the heptamer to transform into a transmembrane pore that chaperones the passage of unfolded LF and EF into the cytosol. We show in planar lipid bilayers that a physiologically relevant proton gradient (DeltapH, where the endosome is acidified relative to the cytosol) is a potent driving force for translocation of LF, EF and the LF amino-terminal domain (LFN) through the PA63 pore. DeltapH-driven translocation occurs even under a negligible membrane potential. We found that acidic endosomal conditions known to destabilize LFN correlate with an increased translocation rate. The hydrophobic heptad of lumen-facing Phe427 residues in PA (or phi clamp) drives translocation synergistically under a DeltapH. We propose that a Brownian ratchet mechanism proposed earlier for the phi clamp is cooperatively linked to a protonation-state, DeltapH-driven ratchet acting trans to the phi-clamp site. In a sense, the channel functions as a proton/protein symporter.
منابع مشابه
Charge requirements for proton gradient-driven translocation of anthrax toxin.
Anthrax lethal toxin is used as a model system to study protein translocation. The toxin is composed of a translocase channel, called protective antigen (PA), and an enzyme, called lethal factor (LF). A proton gradient (ΔpH) can drive LF unfolding and translocation through PA channels; however, the mechanism of ΔpH-mediated force generation, substrate unfolding, and establishment of directional...
متن کاملFunctions of Phenylalanine Residues within the β-Barrel Stem of the Anthrax Toxin Pore
BACKGROUND A key step of anthrax toxin action involves the formation of a protein-translocating pore within the endosomal membrane by the Protective Antigen (PA) moiety. Formation of this transmembrane pore by PA involves interaction of the seven 2beta2-2beta3 loops of the heptameric precursor to generate a 14-strand transmembrane beta barrel. METHODOLOGY/PRINCIPAL FINDINGS We examined the ef...
متن کاملSingle Particle CryoEM of the Anthrax Toxin Initial Engagement Complex
The lethality of anthrax, a zoonotic disease and bioterrorism agent, is due to the anthrax toxin. This tripartitate toxin consists of protective antigen (PA), lethal factor (LF), and edema factor (EF). The 440 kDa heptameric PA prepore binds up to three molecules of LF, a mitogen-activated protein kinase kinase protease, and/or EF, an adenylate cyclase. This entire complex, bound to receptor pr...
متن کاملA phenylalanine clamp catalyzes protein translocation through the anthrax toxin pore.
The protective antigen component of anthrax toxin forms a homoheptameric pore in the endosomal membrane, creating a narrow passageway for the enzymatic components of the toxin to enter the cytosol. We found that, during conversion of the heptameric precursor to the pore, the seven phenylalanine-427 residues converged within the lumen, generating a radially symmetric heptad of solvent-exposed ar...
متن کاملStructure of anthrax lethal toxin prepore complex suggests a pathway for efficient cell entry
Anthrax toxin comprises three soluble proteins: protective antigen (PA), lethal factor (LF), and edema factor (EF). PA must be cleaved by host proteases before it oligomerizes and forms a prepore, to which LF and EF bind. After endocytosis of this tripartite complex, the prepore transforms into a narrow transmembrane pore that delivers unfolded LF and EF into the host cytosol. Here, we find tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 355 5 شماره
صفحات -
تاریخ انتشار 2006